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Abstract

We develop a model of investment with financial constraints and use it to

investigate the relation between investment and Tobin’s q. A firm is financed

partly by insiders, who control its assets, and partly by outside investors.

When insiders’ wealth is scarce, they earn a rate of return higher than the

market rate of return and thus the firm’s value includes a quasi-rent on in-

vested capital. This implies that two forces drive q: changes in the value of

invested capital and changes in the value of the insiders’ future rents per unit

of capital. This weakens the correlation between q and investment, relative

to the frictionless benchmark. We present a calibrated version of the model,

which, due to this effect, can generate more realistic correlations between in-

vestment, q, and cash flow.

Keywords: Financial constraints, optimal financial contracts, investment, To-
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1 Introduction

Dynamic models of the firm imply that investment decisions and the value of the
firm should both respond to expectations about future profitability of capital. In
models with constant returns to scale and convex adjustment costs these relations
are especially clean, as investment and the firm’s value respond exactly in the
same way to new information about future profitability. This is the main predic-
tion of Tobin’s q theory, which implies that current investment moves one-for-one
with q, the ratio of the firm’s financial market value to its capital stock. This pre-
diction, however, is typically rejected in the data, where investment appears to
correlate more strongly with current cash flow than with q.

In this paper, we investigate the relation between investment, q, and cash flow
in a model with financial frictions. The presence of financial frictions introduces
quasi-rents in the market valuation of the firm. These quasi-rents break the one-
to-one link between investment and q. We study how the presence of these quasi-
rents affects the statistical correlations between investment, q, and cash flow, and
ask whether a model with financial frictions can match the correlations in the data.

Our main conclusion is that the presence of financial frictions can bring the
model closer to the data, but that the model’s implications depend crucially on
the shock structure. The crucial observation is that in a model with financial fric-
tions it is still true that investment and q respond to future profitability, but the
two variables now respond differently to information at different horizons. In-
vestment is particularly sensitive to current profitability, which determines cur-
rent internal financing, and to near-term financial profitability, which determines
collateral values. On the other hand, q is relatively more sensitive to profitability
farther in the future, which will determine future growth and thus the size of fu-
ture quasi-rents. Therefore, to break the link between investment and q, we need
the presence of both short-lived shocks—which tend to move investment more
and have relatively smaller effects on q—and long-lived shocks—which do the
opposite.

To develop these points, we build a stochastic model of investment subject to
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limited enforcement, with fully state-contingent claims. We show that our limited
enforcement constraint is equivalent to a state-contingent collateral constraint, so
our model is essentially a stochastic version of Kiyotaki and Moore (1997) with
adjustment costs and state-contingent claims.1 We show that the model leads to
a wedge between average q—which correspond to the q measured from financial
market values—and marginal q—which captures the marginal incentive to invest
and is related one-to-one to investment.2 We then analyze two versions of the
model and look at their implications for an investment regression in which the
investment rate is regressed on average q and cash flow.

First, we focus on a version of the model with no adjustment costs, which,
under some simplifying assumptions, can be linearized and studied analytically.
We consider three different shock structures. In a case with a single persistent
shock, the model has indeterminate predictions regarding investment regression
coefficients. This simply follow because in this case q and cash flow are perfectly
collinear. In a case with two shocks—a temporary shock and a persistent shock—
the one-to-one relation between q and investment breaks down because invest-
ment is driven by productivity in periods t and t+ 1 while q responds to all future
values of productivity. Finally, we consider a case with “news shocks”, that is,
we allow agents to observe J periods in advance the realization of productivity
shocks. In this case, we show that increasing the length of the horizon J reduces
the coefficient on q and increases the coefficient on cash flow in investment re-
gressions. This is due again to the differential responses of investment and q to
information on productivity at different horizons.

The model with no adjustment costs, while analytically tractable, is quantita-
tively unappealing, as it tends to produce too much short-run volatility and too
little persistence in investment. Therefore, for a more quantitative evaluation of
the model we introduce adjustment costs. We calibrate the model to data moments

1Related recent stochastic models that combine state-contingent claims with some form of col-
lateral constraint include He and Krishnamurthy (2013), Rampini and Viswanathan (2013) and
Di Tella (2016).

2The terminology goes back to Hayashi (1982), who shows that the two are equivalent in a
canonical model with convex adjustment costs.
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from Compustat and analyze its implications both in terms of impulse responses
and in terms of investment regressions. Our baseline calibration is based on the
two shocks structure, with temporary and persistent shocks. In this calibration
we show that q responds relatively more strongly to the persistent shock while
investment responds relatively more strongly to the transitory shock, in line with
the intuition from the no-adjustment-cost case. This leads to investment regres-
sions with a smaller coefficient on q and a larger coefficient on cash flow, relative
to a model with no financial frictions, thus bringing us closer to empirical coeffi-
cients. However, the q coefficient is still larger than in the data and the cash flow
coefficient is smaller than in the data. When adding the possibility of news shocks,
the disconnect between q and investment increases, leading to further reductions
in the q coefficient and increases in the cash flow coefficient.

Fazzari et al. (1988) started a large empirical literature that explores the rela-
tion between investment and q using firm-level data. The typical finding in this
literature is a small coefficient on q and a positive and significant coefficient on
cash flow.3 Fazzari et al. (1988), Gilchrist and Himmelberg (1995) and most of
the subsequent literature interpret these findings as a symptom of financial fric-
tions at work. More recent work by Gomes (2001) and Cooper and Ejarque (2003)
questions this interpretation. The approach taken in these two papers is to look
at the statistical implications of simulated data generated by a model to under-
stand the empirical correlations between investment, q and cash flow.4 In their
simulated economies with financial frictions q still explains most of the variabil-
ity in investment, and cash flow does not provide additional explanatory power.
In this paper, we take a similar approach but reach different conclusions. This is
due to two main differences. First, Gomes (2001) and Cooper and Ejarque (2003)
model financial frictions by introducing a transaction cost which is a function of
the flow of outside finance issued each period, while we introduce a contractual
imperfection that imposes an upper bound on the stock of outside liabilities as a
fraction of total assets. Our approach adds a state variable to the problem, namely

3See Hubbard (1998) for a survey.
4An approach that goes back to Sargent (1980).
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the stock of existing liabilities of the firm as a fraction of assets, thus generating
slower dynamics in the gap between internal funds and the desired level of in-
vestment. Second, we explore a variety of shock structures, which, as we argue
below, play an important role in our results.

A related strand of recent literature has focused on violations of q theory com-
ing from decreasing returns or market power, leaving aside financial frictions.5

We see our effort as complementary to this literature, since both financial frictions
and decreasing returns determine the presence of future rents embedded in the
value of the firm. Also in that literature the shock structure plays an important
role in the results. For example, Eberly et al. (2008) show that it is easier to obtain
realistic implications for investment regressions by assuming a Markov process
in which the distribution from which persistent productivity shocks are drawn
switches occasionally between two regimes. Abel and Eberly (2011) also show
that in models with decreasing returns it is possible to obtain interesting dynam-
ics in q with no adjustment costs, similarly to what we do in Section 3 in a model
with constant returns to scale and financial constraints.

The simplest shock that breaks the link between q and investment in models
with financial constraints is a purely temporary shock to cash flow, which does not
affect capital’s future productivity. Absent financial frictions this shock should
have no effect on current investment. This idea is the basis of a strand of em-
pirical literature that tests for financial constraints by identifying some source of
purely temporary shocks to cash flow. This is the approach taken by Blanchard
et al. (1994) and Rauh (2006), which provide reliable evidence of the presence of
financial constraints. Our paper builds on a similar intuition, by showing that in
general shocks affecting profitability at different horizons have differential effects
on q and investment and asks whether, given a realistic mix of shocks, a model
with financial frictions can produce the unconditional correlations observed in
the data.

In this paper we use the simplest possible model with the features we need:

5See Schiantarelli and Georgoutsos (1990) Alti (2003), Moyen (2004), Eberly et al. (2008), Abel
and Eberly (2011),Abel and Eberly (2012), .

4



an occasionally binding financial constraint; a dynamic, stochastic structure; ad-
justment costs that can produce realistic investment dynamics. There is a growing
literature that builds richer models that are geared more directly to estimation.
In particular, Hennessy and Whited (2007) build a rich structural model of firms’
investment with financial frictions, which is estimated by simulated method of
moments. They find that the financial constraint plays an important role in ex-
plaining observed firms’ behavior. In their model, due to the complexity of the
estimation task, the financial friction is introduced in a reduced form manner, by
assuming transaction costs associated to the issuance of new equity or debt, as in
Gomes (2001) or Cooper and Ejarque (2003).6 We see our effort as complementary,
as we have a more stylized model, but with financial constraints coming from an
explicitly modeled contractual imperfection.

A growing number of papers uses recursive methods to characterize optimal
dynamic financial contracts in environments with different forms of contractual
frictions (Atkeson and Cole (2005), Clementi and Hopenhayn (2006), DeMarzo
and Sannikov (2006), DeMarzo et al. (2012)). The limited enforcement friction in
this paper makes it closer to the models in Albuquerque and Hopenhayn (2004)
and Cooley et al. (2004). Within this literature Biais et al. (2007) look more closely
at the implications of the theory for asset pricing. In particular, they find a set
of securities that implements the optimal contract and then study the stochastic
behavior of the prices of these securities. Here, our objective is to examine the
model’s implication for q theory, therefore we simply focus on the total value of
the firm, which includes the value of all the claims held by insiders and outsiders.

In Section 2 we present the model. In Section 3, we study the case of no ad-
justment costs, deriving analytical results. In Section 4, we study the model with
adjustment costs, relying on numerical simulations.

6The difference in results, relative to these papers, appears due to the fact that Hennessy and
Whited (2007) also match the behavior of a number of financial variables.
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2 The Model

Consider an infinite horizon economy, in discrete time, populated by a continuum
of entrepreneurs who invest in physical capital and raise funds from risk neutral
investors.

The entrepreneurs’ technology is linear: Kit units of capital, installed at time
t − 1 by entrepreneur i, yield profits AitKit at time t. We can think of the linear
profit function AitKit as coming from a constant returns to scale production func-
tion in capital and other variable inputs which can be costlessly adjusted. There-
fore, changes in Ait capture both changes in technology and changes in input and
output prices. For brevity, we just call Ait “productivity”. Productivity is a func-
tion of the state sit, Ait = A (sit), where sit is a Markov process with a finite state
space S and transition probability π (sit|sit−1). There are no aggregate shocks, so
the cross sectional distribution of sit across entrepreneurs is constant.

Investment is subject to convex adjustment costs. The cost of changing the
installed capital stock from Kit to Kit+1 is G (Kit+1, Kit) units of consumption goods
at date t. The function G includes both the cost of purchasing capital goods and
the installation cost. We assume G is increasing and convex in its first argument,
decreasing in the second argument, and displays constant returns to scale. For
numerical results, we use the quadratic functional form

G (Kit+1, Kit) = Kit+1 − (1− δ)Kit +
ξ

2
(Kit+1 − Kit)

2

Kit
. (1)

All agents in the model are risk neutral. The entrepreneurs’ discount factor
is β and the investors’ discount factor is β̂, with β̂ > β. We assume investors
have a large enough endowment of the consumption good each period so that the
equilibrium interest rate is 1 + r = 1/β̂. Each period an entrepreneur retires with
probability γ and is replaced by a new entrepreneur with an endowment of 1 unit
of capital. When an entrepreneur retires, productivity Ait is zero from next period
on. The retirement shock is embedded in the process sit by assuming that there is
an absorbing state sr with A(sr) = 0 and the probability of transitioning to sr from
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any other state is γ.
Each period, entrepreneur i can issue one-period state contingent liabilities,

subject to limited enforcement. The entrepreneur controls the firm’s capital Kit

and, at the beginning of each period, can default on his liabilities and divert a
fraction 1− θ of the firm’s capital. If he does so, he re-enters the financial mar-
ket as a new entrepreneur, with capital (1− θ)Kit and no liabilities. That is, the
punishment for a defaulting entrepreneur is the loss of a fraction θ of the firm’s
assets.

2.1 Optimal investment

We formulate the optimization problem of the individual entrepreneur in recur-
sive form, dropping the subscripts i and t. Let V (K, B, s) be the expected utility of
an entrepreneur in state s, who enters the period with capital stock K and current
liabilities B. For now, we simply assume that the problem’s parameters are such
that the entrepreneur’s optimization problem is well defined. In the following
sections, we provide conditions that ensure that this is the case.7 The function V
satisfies the Bellman equation

V (K, B, s) = max
C≥0,K′≥0,{B′(s′)}

C + βE
[
V
(
K′, B′

(
s′
)

, s′
)
|s
]

, (2)

subject to

C + G
(
K′, K

)
≤ A(s)K− B + β̂E

[
B′
(
s′
)
|s
]

, (3)

V
(
K′, B′

(
s′
)

, s′
)
≥ V

(
(1− θ)K′, 0, s′

)
, ∀s′, (4)

where C is current consumption, K′ is next period’s capital stock , and B′ (s′)
are next period’s liabilities contingent on s′. Constraint (3) is the budget con-
straint and β̂E [B′ (s′) |s] are the funds raised by selling the state contingent claims
{B′ (s′)} to the investors. Constraint (4) is the enforcement constraint that requires

7In the Online Appendix we provide a general existence result.
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the continuation value under repayment to be greater than or equal to the contin-
uation value under default.

The assumption of constant returns to scale implies that the value function
takes the form V (K, B, s) = v (b, s)K for some function v, where b = B/K is the
ratio of current liabilities to the capital stock. We can then rewrite the Bellman
equation as

v (b, s)K = max
C≥0,K′≥0
{b′(s′)}

C + βE
[
v
(
b′
(
s′
)

, s′
)
|s
]

K′, (5)

subject to

C + G
(
K′, K

)
≤ A(s)K− bK + β̂E

[
b′
(
s′
)
|s
]

K′, (6)

v
(
b′
(
s′
)

, s′
)
≥ (1− θ) v

(
0, s′

)
, ∀s′. (7)

It is easy to show that v is strictly decreasing in b. We can then find state-
contingent borrowing limits b(s′) such that the enforcement constraint can be
written as

b′
(
s′
)
≤ b

(
s′
)

, ∀s′. (8)

So the enforcement constraint is equivalent to a state contingent upper bound on
the ratio of the firm’s liabilities to capital. Relative to existing models with col-
lateral constraints, two distinguishing features of our model are that we allow for
state-contingent claims and we derive the state-contingent bounds endogenously
from limited enforcement.8

8Other recent models that allow for state-contingent claims include He and Krishnamurthy
(2013) and Rampini and Viswanathan (2013). Cao (2013) develops a general model with an explicit
stochastic structure that studies collateral constraints with non-state-contingent debt.
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2.2 Average and Marginal q

To characterize the solution to the entrepreneur’s problem let us start from the
first order condition for K′:

λG1
(
K′, K

)
= λβ̂E

[
b′|s
]
+ βE

[
v′|s
]

, (9)

where λ is the Lagrange multiplier on the budget constraint (6), or the marginal
value of wealth for the entrepreneur. The expressions E [b′|s] and E [v′|s] are
shorthand for E [b′ (s′) |s] and E [v (b′ (s′) , s′) |s]. Optimality for consumption im-
plies that λ ≥ 1 and the non-negativity constraint on consumption is binding if
λ > 1.

To interpret condition (9) rewrite it as:

λ =
βE [v′|s]

G1 (K′, K)− β̂E [b′|s]
≥ 1. (10)

When the inequality is strict the entrepreneur strictly prefers reducing current
consumption to invest in new units of capital. If C was positive the entrepreneur
could reduce it and use the additional funds to increase the capital stock. The
marginal cost of an extra unit of capital is G1(K′, K) but the extra unit of capital
increases collateral and allows the entrepreneur to borrow β̂E [b′|s] more from
the consumers. So a unit reduction in consumption leads to a levered increase
in capital invested of 1/(G1 − β̂E [b′|s]). Since capital tomorrow increases future
utility by βE [v′|s], we obtain (10).

Condition (9) can be used to derive our main result on average and marginal
q. The value of all the claims on the firm’s future earnings, held by investors and
by the entrepreneur at the end of the period, is

β̂E
[
B′
(
s′
)
|s
]
+ βE

[
V
(
K′, B′

(
s′
)

, s′
)
|s
]

.
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Dividing by total capital invested gives us average q:

qa ≡ β̂E
[
b′|s
]
+ βE

[
v′|s
]

.

Marginal q, on the other hand, is just the marginal cost of one unit of new capital,
qm ≡ G1 (K′, K). We can then rearrange equation (9) and express it in terms of qa

and qm as:

qa = qm +
λ− 1

λ
βE
[
v′|s
]

. (11)

Since λ > 1 if only if the non-negativity constraint on consumption is binding, we
have proved the following result.

Proposition 1. Average q is greater than or equal to marginal q, with strict equality if
and only if the non-negativity constraint on consumption is binding.

The difference between average and marginal q is larger if either the Lagrange
multiplier λ is larger or the future value of entrepreneurial equity E [v′|s] is larger,
as we can see from equation (11). As we shall see in the numerical part of the
paper, an increase in indebtedness b increases λ but reduces the future value of
entrepreneurial equity, so in general the relation between b and qa − qm can be
non-monotone. There is a cutoff for b such that λ = 1 below the cutoff and λ > 1
above the cutoff, so we know the relation is increasing in some region.

The fact that the only Lagrange multiplier appearing in (11) is λ, does not
mean that the collateral constraint is not relevant in determining the gap between
average and marginal q. Consider the first order condition for b′

β̂λ + βvb
(
b′
(
s′
)

, s′
)
= µ(s′),

where µ(s′) is the Lagrange multiplier on the enforcement constraint (8) (expressed
as a ratio of π(s′|s)K′ for convenience). Using the envelope condition for b to sub-
stitute for vb and using time subscripts we can then write

λt =
β

β̂
λt+1 +

1
β̂

µt+1. (12)
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This condition shows that λt is a forward looking variable determined by current
and future values of µt+1. Positive values of this Lagrange multiplier in the future
induce the entrepreneur to reduce consumption today to increase internal funds
available. The forward looking nature of λt will be useful to interpret some of our
numerical results about news shocks.

If β = β̂, condition (12) implies that if, at some date t, the entrepreneur’s con-
sumption is positive and λt = 1, then the non-negativity constraint and the col-
lateral constraint can not be binding at any future date. In other words, once the
entrepreneur is unconstrained he can never go back to being constrained. This is
due to the assumption of complete state contingent markets. Assuming β < β̂

ensures that entrepreneurs can alternate between positive and zero consumption.
We conclude this section by introducing some asset pricing relations that will

be used to characterize the equilibrium. We use the notation G1,t and G2,t as short-
hand for G1 (Kt+1, Kt) and G2 (Kt+1, Kt).

Proposition 2. The following conditions hold in equilibrium

λt = βEt

[
λt+1

At+1 − G2,t+1 − bt+1

G1,t − β̂Etbt+1

]
, (13)

and
β̂Et

[
At+1 − G2,t+1

G1,t

]
≥ 1 ≥ Et

[
βλt+1

λt

At+1 − G2,t+1

G1,t

]
. (14)

The last two conditions hold with strict inequality if the collateral constraint is binding
with positive probability.

Notice that
At+1 − G2,t+1 − bt+1

G1,t − β̂Etbt+1

represents the levered rate of return on capital. Condition (13) further illustrates
the forward-looking nature of λt. In particular, it shows that λt is a geometric
cumulate of all future levered returns on capital. Condition (13) can also be in-
terpreted as a standard asset pricing condition, dividing both sides by λt and ob-
serving that βλt+1/λt is the stochastic discount factor of the entrepreneur.
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The expression
At+1 − G2,t+1

G1,t

is the unlevered return on capital. When the collateral constraint is binding the
first inequality in (14) is strict and this implies that the expected rate of return on
capital is higher than the interest rate 1+ r. This implies that the levered return on
capital is higher than the unlevered return. The entrepreneurs will borrow up to
the point at which the discounted levered rate of return is 1, by condition (13). At
that point the discounted unlevered return will be smaller than 1, by the second
inequality in (14). This second inequality can also be interpreted as capturing the
fact that investing in physical capital has the additional benefit of relaxing the
collateral constraint.

Define the finance premium as the difference between the expected return on
entrepreneurial capital and the interest rate (which is equal to 1/β̂):

f pt ≡ Et

[
At+1 − G2,t+1

G1,t

]
− (1 + r) . (15)

The first inequality in (14) shows that the finance premium is positive whenever
the collateral constraint is binding. We will use this definition of the finance pre-
mium in Section 4.5.

3 Model with No Adjustment Costs: Analytical Re-

sults

We now consider the case of no adjustment costs, which arises when

G (Kt+1, Kt) = Kt+1 − (1− δ)Kt.

In this case, we can derive some analytical results that help build the intuition for
the numerical results in the following sections. For this section we assume a strict
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inequality between the discount factors of entrepreneurs and investors, β < β̂, so
that we can focus on cases in which the collateral constraint is always binding.

Absent adjustment costs, the value function takes the linear form

V (K, B, s) = Λ (s) [R (s)K− B] , (16)

where R is the gross return on capital defined by

R (s) ≡ A (s) + 1− δ.

Notice that R (s)K− B is the total net worth of the entrepreneur at the beginning
of the period, the total value of the capital stock minus the entrepreneur’s liabili-
ties. With a linear value function the borrowing limits are

b(s) = θR (s) , (17)

and they have a natural interpretation: the entrepreneur can pledge a fraction θ of
the firm’s gross returns.

We now make assumptions that ensure that the problem is well defined and
that the collateral constraint is always binding in equilibrium. Assume the follow-
ing three inequalities hold for all s:

βE
[
R
(
s′
)
|s
]
> 1, (18)

θβ̂E
[
R
(
s′
)
|s
]
< 1, (19)

(1− γ) (1− θ) βE [R (s′) |s, s′ 6= sr]

1− θβ̂E [R (s′) |s]
< ζ, (20)

for some ζ < 1. Condition (18) implies that the expected rate of return on capital
is greater than the inverse discount factor of the entrepreneur, so the entrepreneur
prefers investment to consumption. Condition (19) implies that pledgeable re-
turns are insufficient to finance the purchase of one unit of capital, i.e., invest-
ment cannot be fully financed with outside funds. This condition ensures that
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investment is finite. Finally, condition (20) ensures that the entrepreneur’s utility
is bounded. The last condition allows us to use the contraction mapping theo-
rem to fully characterize the equilibrium marginal value of wealth Λ (s) in the
following proposition. The proof of this lemma and of the following results in
this section are in the appendix.

Lemma 1. If conditions (18)-(20) hold there is a unique function Λ : S → [1, ∞) that
satisfies the recursion

Λ (s) =
β (1− θ)E [Λ (s′) R (s′) |s]

1− θβ̂E [R (s′) |s]
, for all s 6= sr, (21)

and Λ (s) = 1 for s = sr.

Notice that (21) is a special case of condition (13), in which the constraint is
always binding. The following proposition characterizes an equilibrium.

Proposition 3. If conditions (18)-(20) hold and Λ (s) satisfies

Λ (s) >
β

β̂
Λ
(
s′
)

, (22)

for all s, s′ ∈ S , then the collateral constraint is binding in all states, consumption is zero
until the retirement shock, investment in all periods before retirement is given by

K′ − (1− δ)K
K

=
(1− θ) R (s)

1− θβ̂E [R (s′) |s]
− (1− δ) , (23)

and average q is
qa = E

[(
(1− θ) βΛ

(
s′
)
+ θβ̂

)
R
(
s′
)
|s
]

. (24)

Condition (22) ensures that entrepreneurs never delay investment. Namely,
it implies that they always prefer to invest in physical capital today rather than
buying a state-contingent security that pays in some future state.

The entrepreneur’s problem can be analyzed under weaker versions of (18)-
(22), but then the constraint will be non-binding in some states. It is useful to
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remark that we could embed our model in a general equilibrium environment
with a constant returns to scale production function in capital and labor and a
fixed supply of labor. In this general equilibrium model A (s) is replaced by the
endogenous value of the marginal product of capital. It is then possible to de-
rive conditions (18)-(22) endogenously if shocks are small and the non-stochastic
steady state features a binding collateral constraint.

We now assume conditions (18)-(22) hold and analyze the model assuming
that there are small shocks to A around the level Ā and linearizing the equilibrium
conditions (23)-(24) around the non-stochastic steady state. The investment rate is
defined as investment over assets and is denoted by

IKt ≡
Kt+1 − (1− δ)Kt

Kt
.

We will use a bar to denote steady state values and a tilde to denote deviations
from the steady state.

In steady state equation (21) yields

Λ̄ =
β (1− θ) γR̄

1−
(
θβ̂ + (1− θ) (1− γ) β

)
R̄

.

and the investment rate is

¯IK =
(1− θ) R̄
1− θβ̂R̄

− (1− δ) .

The following proposition charaterizes the dynamics of investment and Tobin’s Q
around the steady state.

Proposition 4. If the economy satisfies (18)-(22) a linear approximation gives the follow-
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ing expressions for investment and average q:

˜IKt =
1− θ

1− θβ̂R̄

[
Ãt +

θβ̂R̄
1− θβ̂R̄

Et
[
Ãt+1

]]
, (25)

q̃a
t =

[
β (1− θ) (γ + (1− γ) Λ̄) + θβ̂

]
Et
[
Ãt+1

]
+

+ β (1− θ) (1− γ) R̄Et
[
Λ̃t+1

]
, (26)

where

Λ̃t =
Λ̄/R̄

1− θβ̂R

∞

∑
j=0

(
(1− γ) Λ̄

γ + (1− γ) Λ̄

)j

Et
[
Ãt+j

]
, (27)

conditional on st 6= sr.

Equations (25)-(26) express investment and average q in terms of current and
future expected values of productivity. Since At is equal to profits over capital,
we match it to cash flow over assets in the empirical literature. Given assump-
tions about the process for At, equations (25) and (26) give us all the information
about the variance-covariance matrix of ( ˜IKt, q̃a

t , Ãt) and thus about investment
regression coefficients.

The crucial observation is that average q is affected by the marginal value of
entrepreneurial net worth, which is a forward looking variable that reflects expec-
tations about all future excess returns on entrepreneurial capital.9 Through this
channel, average q responds to information about future values of At at all hori-
zons. At the same time, investment is only driven by the current and next period
value of At. The current value determines internal funds, the next period value
determines collateral values. Putting these facts together implies that shocks that
affect profitability differentially at different horizons will break the link between
average q and investment.

We now turn to a few examples that show how different shock structures lead
to different implications for the variance-covariance matrix of investment, average
q and cash flow and thus for investment regressions.

9See the discussion following Proposition 2.
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Example 1. Productivity Ãt follows the AR(1) process:

Ãt = ρÃt−1 + εt,

where εt is an i.i.d. shock.

In this example, we have Et
[
Ãt+j

]
= ρj Ãt so all future expected values of Ãt

are proportional to the current value. Substituting in (25)-(26), it is easy to show
that both q̃a

t and ˜IKt are linear functions of Ãt. Therefore, in this case cash flow
and average q are both, separately, sufficient statistics for investment. This is true
even though there is a financial constraint always binding, simply due to the fact
that a single shock is driving both variables.

In this example, the coefficients of a regression of investment on average q and
cash flow are indeterminate due to perfect collinearity, but adding cash flow to
a univariate regression of investment on average q alone does not increase the
regression’s explanatory power.

Example 2. Productivity Ãt has a persistent component xt and a temporary component
ηt:

Ãt = xt + ηt

with
xt = ρxt−1 + εt.

In this example, we have Et
[
Ãt+j

]
= ρjxt, and substituting in (25)-(26), we

arrive at:

˜IKt =
(1− θ)

(
1− (1− ρ)R̄θβ̂

)(
1− θβ̂R̄

)2 xt +
1− θ

1− θβ̂R̄
ηt,

q̃a
t =

[(
β (1− θ) (γ + (1− γ) Λ̄) + θβ̂

)
ρ +

β (1− θ) (1− γ) (γ + (1− γ) Λ̄)(
1− θβ̂R̄

)
(γ + (1− γ) (1− ρ) Λ̄)

Λ̄ρ

]
xt.

If we now run a regression of investment on average q and cash flow, cash flow
is the only variable that can capture variations in ηt, so the coefficient on cash flow
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will be positive and equal to
1− θ

1− θβ̂R̄
,

and cash flow improves the explanatory power of the investment regression. The
coefficient on cash flow here is bigger than 1, but that’s clearly due to the absence
of adjustment costs. In the next section we will build on the logic of this example,
to analyze quantatively the effect of financial constraints on investment regres-
sions.

Notice that in this example, investment, q and cash flow are fully determined
by the two random variables xt and ηt and the coefficients are independent of the
variance parameters. This implies that, given all the other parameters, the coeffi-
cients of the investment regression are independent of the values of the variances
σ2

ε and σ2
η , as long as both are positive. As we shall see, this result does not extend

to the general model with adjustment costs.
As an aside, notice that in this example, the coefficient on cash flow is higher

for firms with larger values of θ, i.e., for firms that can finance a larger fraction
of investment with external funds. These firms respond more because they can
lever more any temporary increase in internal funds. This is reminiscent of the
observation in Kaplan and Zingales (1997) that the coefficient on cash flow in an
investment regression should not be used as measure of the tightness of the finan-
cial constraint.

We now turn to our last example, in which we introduce news shocks.

Example 3. The productivity process is as in Example 2 but the value of the permanent
component xt is known J periods in advance, with J ≥ 1.

In the appendix, we show that in this example investment and q dynamics are
given by

q̃a
t =

 β (1− θ) (γ + (1− γ) Λ̄) + θβ̂

+ β(1−θ)(1−γ)Λ̄

(1−θβ̂R)
(

1− (1−γ)Λ̄ρ
γ+(1−γ)Λ̄

)
 xt+1 + ε̃t (28)
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where10

ε̃t =
J−1

∑
j=1

β (1− θ) (1− γ) Λ̄(
1− θβ̂R

) (
1− (1−γ)Λ̄ρ

γ+(1−γ)Λ̄

) ( (1− γ) Λ̄
γ + (1− γ) Λ̄

)j

εt+1+j,

and
˜IKt =

1− θ

1− θβ̂R
(xt + ηt) +

(1− θ) Rθβ̂(
1− θβ̂R

)2 xt+1.

We can then show that increasing J affects the coefficients and the R2 of the invest-
ment regression as follows.

Proposition 5. In the economy of Example 3, all else equal, increasing the horizon J at
which shocks are anticipated decreases the coefficient on average q, increases the coefficient
on cash flow, and reduces the R2 of the investment regression.

The proof of this result is in the appendix. Investment, as in the previous ex-
ample, is just a linear function of productivity at times t and t + 1, which fully de-
termine current cash flow and collateral values. On the other hand, q is a function
of all future values of At and, given the presence of news, these values are driven
by anticipated future shocks which have no effect on investment. This weakens
the relation between q and investment. Moreover, since q is the only source of
information about xt+1, and, with news shocks, it becomes a noisier source of
information, this also reduces the joint explanatory power of q and cash flow.

Notice that news shocks here are acting very much like measurement error
in q, by adding a shock to it that is unrelated to the shocks driving investment.
However, financial frictions are essential in introducing this source of error. Ab-
sent financial frictions future values of productivity should not affect q, and it is
only because q includes future quasi-rents that the relation arises.

In the next section, we will see that the forces identified in these three examples
carry over to a more general model with adjustment costs.

10When J = 1, ε̃t = 0.
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4 Model with Adjustment Costs: Quantitative Analy-

sis

We now turn to the full model with adjustment costs and analyze its implica-
tions using numerical simulations. While the no adjustment cost model analyzed
above is useful to build intuition, it has a number of unrealistic implications in
particular for the inertial behavior of investment. The full model with adjustment
costs, on the other hand, can be calibrated to match some moments of the ob-
served processes for profits and investment, so that we can look at its quantitative
implications.

We start by describing our choice of parameters and characterize the equilib-
rium in terms of policy functions and impulse responses. We then run investment
regressions on the simulated output and explore the model’s ability to replicate
empirical investment regressions.

4.1 Calibration

The time period in the model is one year. The baseline parameter values are sum-
marized in Table 1. The first three parameters are pre-set, the remaining parame-
ters are calibrated on Compustat data. We now describe their choice in detail.

The investors’ discount factor β̂ is chosen so that the implied interest rate is
8.7%. As argued by Abel and Eberly (2011) the interest rate used in this type
of exercise should correspond to a risk-adjusted expected return. The number
we choose is in the range of rates of return used in the literature.11 The en-
trepreneurs’ discount factor β has effects similar to the parameter γ which gov-
erns their exit rate. In particular, both affect the incentives of entrepreneurs to
accumulate wealth and become financially unconstrained and both affect the for-
ward looking component of q. Therefore, we fix β at a level lower than β̂ and

11Abel and Eberly (2011) and DeMarzo et al. (2012) choose numbers near 10%, while Moyen
(2004) and Gomes (2001) use r = 6.5%.
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Table 1: Parameters

Preset β β̂ θ
0.90 0.92 0.3

Calibrated to cash flow moments µa ρx σε ση

0.246 0.743 0.0713 0.0375
Calibrated to investment and q moments δ ξ γ

0.0250 1.75 0.095

calibrate γ.12 Regarding the fraction of non-divertible assets θ, there is only in-
direct empirical evidence, and existing simulations in the literature have used a
wide range of values. Here we choose θ = 0.3 in line with evidence in Fazzari
et al. (1988) and Nezafat and Slavik (2013). In particular, Fazzari et al. (1988) re-
port that 30% of manufacturing investment is financed externally. Nezafat and
Slavik (2013) use US Flow of Funds data for non-financial firms to estimate the
ratio of funds raised in the market to fixed investment, and find a mean value of
0.284.

The parameters in the second line of Table 1 are calibrated to match moments
of the firm-level cash flow time series in Compustat. We assume that profits per
unit of capital At are the sum of a persistent and a temporary component. Namely,

Ait = xit + ηit

xit = (1− ρx)µa + ρxxit−1 + εit

where ηit and εit are i.i.d. Gaussian shocks with variances σ2
η and σ2

ε . We identify
profits per unit of capital in the model, Ait, with cash flow per unit of capital in
the data, denoted by CFKit.13 The parameter µa is set equal to average cash flow
per unit of capital in the data. The values of ρx, σε and ση are chosen to match
the first and second order autocorrelation and the standard deviation of cash flow

12Changing the chosen value of β in a reasonable range does not affect the results significantly.
13Cash flow is equal to net income before extraordinary items plus depreciation.
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Table 2: Target moments and model values

Moment ρ1(CFK) ρ2(CFK) σ(CFK) µ(IK) σ(IK) µ(qa)
Target value 0.60 0.41 0.113 0.17 0.111 2.5
Model value 0.60 0.41 0.113 0.23 0.098 2.5

per unit of capital in the data, denoted, respectively, by ρ1(CFK), ρ2(CFK) and
σ(CFK). These moments are estimated using the approach of Arellano and Bond
(1991) and Arellano and Bover (1995) and are reported in Table 1.14 Notice that
simply computing raw autocorrelations in the data—as sometimes done in the
literature—would lead to biased estimates, given the short sample length.15 In
terms of sample, we use the same sub-sample of Compustat used in Gilchrist and
Himmelberg (1995) so that we can compare our simulated regressions to their
results.16

The next three parameters in Table 1, δ, ξ, and γ, are chosen to match three
moments from the Compustat sample: the mean and standard deviation of the in-
vestment rate, µ(IK) and σ(IK), and the mean of average q, µ(qa). The reason why
δ and ξ help determine the level and volatility of the investment rate is intuitive, as
these two parameters determine the depreciation rate and the slope of the adjust-
ment cost function. The parameter γ controls the speed at which entrepreneurs
exit, so it affects the discounted present value of the quasi-rents they expect to

14We estimate the firm-specific variation in cash-flow by first taking out the aggregate mean
for each year and then applying the function xtabond2 in STATA. This implements the GMM ap-
proach of Arellano and Bover (1995). This approach avoids estimating individual fixed effects
affecting both the dependent variable (cash flow) and one of the independent variables (lagged
cash flow), by first-differencing the law of motion for cash flow, and then using both lagged differ-
ences and lagged levels as instruments. We use the first three available (non-autocorrelated) lags
in differences as instruments, with lags chosen separately for the 1st and 2nd order autocorrelation
estimation. One lagged level is also used as an instrument.

15This type of bias was first documented in Nickell (1981). The bias is non-negligible in
our sample. For the first-order autocorrelation, the Arellano and Bond (1991) approach gives
ρ1(CFK) = 0.60, while the raw autocorrelation in the data is 0.42.

16In particular, we restrict attention to the sample period 1978-1989 and use the same 428 listed
firms used in their paper.
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receive in the future and thus average q. However, the three parameters interact,
so we choose them jointly—by a grid search—in order to minimizes the average
squared percentage deviation between the three model-generated moments and
their targets. The target moments from the data and the model generated mo-
ments are reported in Table 2.17

Notice that there is a tension between hitting the targets for µ(IK) and σ(IK).
Increasing any of the parameters, δ, ξ, γ reduces µ(IK), bringing it closer to its
target value, but also decreases σ(IK), bringing it farther from its target. Notice
also that it is important for our purposes that the model generates a realistic level
of volatility in the investment rate, given that IK is the dependent variable in the
regressions we will present in Section 4.3 below.

Our calibration also determines the average size of the wedge between average
and marginal q. In particular, µ(qa) = 2.5 is the mean value of average q while ξ

and µ(IK) determine the mean value of marginal q, which is 1 + ξ(µ(IK)− δ) =

1.25. Therefore, the average wedge between average and marginal q is 1.25. Since
the presence of the wedge is what breaks the sufficient statistic property of q it is
useful that our calibration imposes some discipline on the wedge’s size.

All the simulations assume that entrepreneurs enter the economy with a unit
endowment of capital and zero financial wealth (i.e., zero current profits and zero
debt). Since the entrepreneurs’ problem is invariant to the capital stock and all
our empirical targets are normalized by total assets, the choice of the initial capital
endowment is just a normalization. We have experimented with different initial
conditions for financial wealth, but they have small effects on our results given
that—with our parameters—the state variable b converges quickly to its stationary
distribution.

It is useful to compare our results to those of a benchmark model with no
financial frictions. To make the parametrization of the two models comparable,
we re-calibrate the parameters δ, ξ and γ for the frictionless case. The moments
and associated parameters are reported in Table 3. Notice that the frictionless
model generates a low value of µ(qa). For given IK, increasing ξ would increase

17The target standard deviation σ(IK) is a pooled estimate.
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Table 3: Calibration of frictionless model

Parameter δ ξ γ
0.05 1.50 0.125

Moment µ(IK) µ(qa) σ (IK)
Target value 0.17 2.5 0.111
Model value 0.18 1.2 0.116

marginal and average q (which are the same in the frictionless case), but it would
reduce the volatility of investment.

In Section 4.5 we consider an alternative calibration approach, that targets the
average finance premium, as defined in equation (15).

4.2 Model dynamics

We now characterize the optimal solution to the entrepreneurs’ problem, first de-
scribing optimal choices and values as function of the state variables and next
showing what this behavior implies for the responses of endogenous variables to
different shocks.

4.2.1 Characterization

To illustrate the model behavior, it helps intuition to use as state variables A and
n, where n is defined as

n ≡ A + 1− δ− b, (29)

rather than using A and b. The variable n is a measure of net worth over assets.
Net worth excluding adjustment costs is AK + (1− δ)K− B. Dividing by K leads
to (29).18

On each row of Figure 1 we plot, respectively, the value function (per unit of

18An alternative is to evaluate installed capital at its shadow value, thus getting net worth equal
to AK− G2(K′, K)K− B. The figures are similar.
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Figure 1: Characterization of equilibrium
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Note: The three columns correspond to the 20th, 50th, and 80th percentile of the persistent
component of productivity x. The range for the net worth variable n is between the 10th
and 90th percentiles of the distribution of n conditional on x.

capital) v, the optimal investment ratio K′/K, the Lagrange multiplier λ on the en-
trepreneur’s budget constraint, and the wedge between average q and marginal q.
Each column corresponds to different values of persistent component of produc-
tivity x. In particular, we report three values corresponding to the the 20th, 50th
and 80th percentile of the unconditional distribution of x. On the horizontal axis
we have n, but the domain differs between columns as we plot values between
the 10th to 90th percentile of the conditional distribution of n, conditional on the
reported value of x.19

19The joint distribution of (n, x) is computed numerically as the invariant joint distribution gen-
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A higher level of n leads to a higher value v and a higher level of investment
K′/K. Moreover, the value function is concave in n. The Lagrange multiplier λ

is equal to the derivative of the value function and therefore is decreasing in n.
The fact that λ is decreasing in n reflects the fact that a higher ratio of net worth
to capital allows firms to invest more, leading to a higher shadow cost of capital
G1 and thus to a lower expected returns on investment. Eventually, for very high
values of n we reach λ = 1. However, as the figures show this does not happen
for the range of n values more frequently visited in equilibrium.

The bottom row documents how the wedge varies with the level of net worth
n and with the persistent component of productivity x. Let us first look at the
effect of n. Even though λ is decreasing in n, the wedge, qa − qm, does not vary
much with n for a given value of x. Our analytical derivations in Section 2 help
explain this outcome. Recall from equation (11) that the wedge is equal to

λ− 1
λ

βE
[
v′|s
]

.

When we reach the unconstrained solution and λ = 1 the wedge disappears.
However, for lower levels of n, for which the constraint is binding, the relation
is in general non-monotone. An increase in n reduces the marginal gain from an
extra unit of net worth. However, at the same time it increases the future growth
rate of firm’s capital stock and so it increases the base to which this marginal
quasi-rent is applied. This second effect is captured by the expression E[v′|s],
because the value per unit of capital v′ embeds the future growth of the firm and
is increasing in n. The plots in the bottom row of Figure 1 show that in the relevant
range of n these two effects roughly cancel.

On the other hand, comparing the values of the wedge across columns, shows
that persistent component of productivity x has large effects on the wedge and
that the wedge is increasing in x. The reason is that higher values of x lead both
to higher values of λ, as the marginal benefits of extra internal funds increase
with productivity, and to higher values of K′/K and v, because higher productiv-

erated by the optimal policies.

26



ity allows the firm to raise more external funds and grow faster. Therefore both
elements of the wedge increase with higher values of x.

4.2.2 Impulse response functions

We now present impulse response functions that illustrate the model dynamics
following the two shocks. To construct these impulse response functions, we take
a firm starting at the median values of the state variables n and x. We then subject
the firm to a shock at time t, simulate 106 paths following the shock, and report
the difference between the average simulated paths, with and without the initial
shock. Given the non-linearity of the model, the initial conditions for n and x in
general affect the responses. However, in our simulations these non-linear effects
are relatively small, so the plots below are representative.

In the top panel of Figure 2 we plot the responses of marginal and average q,
and cash flow per unit of capital to a 1-standard-deviation persistent shock ε.20

Following a persistent shock all variables increase and return gradually to trend.
The response of average q is larger than that of marginal q, thus producing an
increase in the wedge.

In the bottom panel of Figure 2 we plot the responses of the same variables
to a 1-standard-deviation temporary shock η. Also in this case all three variables
respond positively, but the response is more short-lived. Moreover, now the re-
sponse of average q is slightly smaller than the response of marginal q, so the
wedge shows a small decrease after the shock.

Notice that average q is a forward-looking variable that incorporates the quasi-
rents that the entrepreneur is expected to receive in the future. It is not surprising
that these quasi-rents are only marginally affected by a temporary shock. In the
model with no adjustment costs, the effect is zero, as shown in Section 3 above.
Here, because of adjustment costs, there is a slight positive effect, due to the fact
that the investment response displays a small but positive degree of persistence

20The response of investment K′/K is always proportional to the response of marginal q and is
thus omitted.
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Figure 2: Impulse response functions
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and high investment in the future increases the future value of installed capital.
But this effect is small. In the case of a persistent shock, instead, future quasi-rents
are directly affected by higher future productivity, which is going to lead to faster
growth (as shown in Figure 1), thus explaining the large increase in qa in the top
panel of Figure 2.

The discussion following Figure 1, helps to explain the response of the wedge
qa − qm. A temporary shock, by increasing A temporarily, leads to a pure increase
in net worth per unit of capital, as n = A − b. As we argued when presenting
Figure 1, the effect of such an increase on the wedge is in general ambiguous and,
with our parameter choices, close to zero. In the case of a persistent shock, instead,
the effect is unambiguously to increase the wedge, as the increase in x leads to a
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higher λ and to a higher E[v′|s].
The relative responses of cash flow and marginal q are also different across the

two shocks. In particular, we have a larger response of marginal q relative to the
cash flow response in the case of a persistent shock. The reason is that in the case
of a persistent shock the collateral value of capital increases, thus amplifying the
effect on investment.

4.3 Investment regressions

We now turn to investment regressions, and ask whether the model can replicate
the coefficients on q and cash flow observed in the data. In particular, we ask to
what extent does the presence of a financial friction help in obtaining a smaller
coefficient on q and a positive and large coefficient on cash flow. To answer this
question, we generate simulated data from our model and run investment regres-
sions on it. In line with the empirical literature, we generate a balanced panel of
500 firms for 20 periods, and run the following investment regression:21

IKit = ai0 + a1qa
it + a2CFKit + eit, (30)

where we allow for firm-level fixed effects. All reported results are the mean val-
ues for 50 simulated panels.

The regression coefficients for the baseline model are presented in the first row
of Table 4. As reference points, in the second row we report the coefficients that
arise in the model without financial frictions and in the last row the empirical
estimates in Gilchrist and Himmelberg (1995), which are representative of the or-
ders of magnitude obtained in empirical studies.22 We also report coefficients of
univariate regressions of investment on average q and cash-flow separately.

The results for the frictionless benchmark are reported in the second line of Ta-

21The model features random exit, so to generate a balanced panel we only keep firms for which
exit does not occur for 20 periods.

22We do not report standard errors, but they are small (less than 0.04) for both coefficients in our
simulated data. They are also small in the empirical estimates of Gilchrist and Himmelberg (1995).
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Table 4: Investment regressions

Univariate qa Univariate CFK
a1 a2 R2 coefficient R2 coefficient R2

Baseline model 0.22 0.15 0.98 0.27 0.98 0.81 0.89
Frictionless model 0.67 0.00 1.00 0.67 1.00 0.95 0.86
GH (1995) 0.033 0.24 0.05

ble 4. In this case, average q is a sufficient statistic for investment, the coefficient
on cash flow is zero and the coefficient on q is equal to the inverse of the adjust-
ment cost coefficient ξ, which is calibrated to 1.5. This line shows the standard
empirical failure of the benchmark adjustment cost model.

Adding financial frictions helps to get a smaller coefficient on q and a positive
coefficient on cash flow. The effect is sizable, although the coefficient on q is still
large compared to the very small numbers found in empirical regressions. Notice
also that the R2 of the regression is very close to 1. This is not surprising given that
we have a simple two-shock structure and two explanatory variables.23 Given
that the model is non-linear, the R2 can in general be smaller than 1. However,
by experimenting with impulse responses for different initial values of the state
variables we have confirmed that, given our parameter values, the model is close
to linear in its responses to the two shocks, which helps to explain the high R2 in
Table 4.

The presence of the wedge breaks the one-to-one relation between q and in-
vestment and allows for cash flow to have explanatory power in the the invest-
ment regression. In particular, as we saw in Figure 2 the wedge responds in op-
posite directions to the two shocks, while qm respond positively to both. So the
wedge plays a role somewhat similar to measurement error in dampening the re-
gression coefficient. Notice however that the model still features a strong positive
relation between qa and investment, as documented by the fifth and sixth columns

23For the same reason, in the linear model of Example 2, Section 3, the R2 is 1.
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Table 5: Investment regressions: changing shock variances

Univariate qa Univariate CFK
σε ση σ2

η/σ2
A a1 a2 R2 coefficient R2 coefficient R2

0.113 0.000 0.00 0.38 -0.48 0.99 0.25 0.99 0.90 0.98
0.071 0.037 0.11 0.22 0.15 0.98 0.27 0.98 0.81 0.89
0.033 0.080 0.50 0.28 0.11 0.96 0.32 0.95 0.48 0.56
0.006 0.107 0.90 0.34 0.10 0.84 0.38 0.75 0.18 0.32
0.000 0.113 1.00 2.47 0.01 0.92 2.53 0.92 0.11 0.37

of Table 4, which show that a univariate regression between investment and aver-
age q produces a large coefficient and a large R2 in simulated data (unlike in actual
data). In the rest of the paper we investigate shock structures that can potentially
weaken this relation.

4.3.1 The role of the shock structure

It is useful to look at how the shock structure affects investment regressions. In
Table 5 we report regression coefficients and R2 for different combinations of σε

and ση, keeping constant the total volatility of At. The second row corresponds
to the baseline case of Table 4. In the third column, we report the fraction of
variance due to the temporary shock. Here we keep all remaining parameters at
their baseline level, since we want to focus on how variance parameters affect our
result.

The first row of Table 5 shows an extreme case with no temporary shocks. In
this case, the coefficient on q is larger than in our baseline and the coefficient on
cash flow is actually negative. The last row of the table shows the opposite ex-
treme, with only temporary shocks. Interestingly, also this row displays a larger
coefficient on q. The coefficient on cash flow in this case is close to zero. So going to
a one-shock model, worsens the model performance in terms of replicating invest-
ment regressions. In this case q and investment tend to comove simply because
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they are driven by the same shock. In these cases, we get close to the sufficient
statistic result obtained in the one-shock linear model of Example 1. Example 1
has indeterminate implications for the coefficients, due to the perfect collinear-
ity of q and cash flow. Here, the perfect collinearity result does not hold for two
reasons: first, the model displays inertia so past values of xt determine invest-
ment and q, which complicates the correlation structure of investment, q and cash
flow; second, the model is non-linear. For these reasons, the bivariate coefficients
are determinate even with a single shock, and, in particular, the model prefers to
assign a large coefficient on q.24

The remaining rows of Table 5 illustrate intermediate cases in which both
shocks are present. As argued above, both shocks increase investment but they
have opposite effects on the wedge and that is what reduces the predictive power
of q. So there is some intermediate mix of shocks that adds maximum noise to the
information contained in average q and reduces the overall explanatory power of
the investment regression. In the table this is visible in the non-monotone relation
between the ratio σ2

η/σ2
A and the R2 of the regression.

While it is intuitive that mixing the two shocks affects the total explanatory
power of investment regressions and reduces R2, the quantitative effects on the
two coefficients a1 and a2 are more complex to interpret, as they also depend on
the magnitudes of the responses of investment, cash flow, and q to the underlying
shocks. In particular, persistent shocks tend to affect more, in relative terms, q
than investment, due to the forward looking nature of q and the presence of the
financial constraint which dampens the response of investment (see Figure 2). 25

Persistent shocks lead to a smaller response of investment for a given response of
q, when compared to temporary shocks. This is immediately visible in the mono-

24The results in this table may help reconcile our results with the results of Gomes (2001). In
particular, although Gomes (2001) uses a different model of financial frictions, it is possible that
his result—that q is almost a sufficient statistic for investment—could be driven by his one-shock
structure.

25The same two reasons identified above (inertia and non-linearity) for one-shock models, ex-
plain why in the two-shock model the relative size of the two variances matter for the regression
coefficients, unlike in the simple linearized model with no adjustment costs of Section 3, Example
2.
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tone increase in the univariate coefficient with σ2
η/σ2

A. The effect on the bivariate
coefficient a1 is more complex as, at the same time, the presence of temporary
shocks increases the coefficient on cash flow. Therefore, the relation between each
of the coefficients a1 and a2 and the variance ratio σ2

η/σ2
A is non-monotone.

The overall take out from Table 5 is that, given all other model parameters, the
relative variance of temporary and persistent shocks matter for both the explana-
tory power and for the individual coefficients in investment regressions.

4.3.2 The role of parameters

To illustrate how the results depend on the model’s parameters, we now experi-
ment with different parameter configurations. In the exercises below we keep all
other parameters fixed, i.e., we do not recalibrate the model. Alternative calibra-
tions are discussed in Section 4.5. Table 6 documents the investment regression
results for these alternative specifications.26

The first observation is that our main result is robust to a range of parameter
values: financial frictions reduce the coefficient on average q, a1, (which is equal
to 1/ξ in the frictionless case) and produce a positive and sizeable value for the
coefficient on cash flow, a2. Notice also that for all parameter values explored
in this table R2 remains very high for both the multivariate regression and the
univariate regression with average q.

Quantitatively, there are some interesting details. Two parameterizations stand
out: higher values for β̂ or low values for γ both yield a lower a1 and a higher a2,
bringing the model implied regression coefficients closer to their empirical coun-
terparts. The reason for these effects is that they magnify the forward-looking
component of q, thus further breaking the link with current investment. How-
ever, notice that these values also produce a counterfactually high levels of q on
average.27 Furthermore, low values of θ or ρx and high values of σA, δ or ξ yield

26When we experiment with different values of β̂ we vary β at the same time, keeping the dif-
ference between constant at β̂− β = 0.02, as in the baseline.

27When we re-calibrate our model starting from β̂ = 0.93, the calibration compensates with
a higher value of γ, to hit the average level of q and thus produces coefficients a1 = 0.20 and
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Table 6: Investment regressions: changing parameters

Univariate qa Univariate CFK
a1 a2 R2 coefficient R2 coefficient R2

Baseline 0.22 0.15 0.98 0.27 0.98 0.81 0.89
β̂ = 0.910 0.35 0.21 0.98 0.46 0.97 0.80 0.90
β̂ = 0.930 0.06 0.16 0.99 0.07 0.98 0.81 0.90
θ = 0.200 0.24 0.21 0.98 0.32 0.97 0.79 0.91
θ = 0.400 0.16 0.10 0.99 0.18 0.99 0.84 0.87
ρx = 0.700 0.24 0.20 0.98 0.32 0.98 0.74 0.91
σA = 0.090 0.24 0.18 0.97 0.30 0.96 0.76 0.84
σA = 0.130 0.20 0.13 0.99 0.23 0.99 0.84 0.91
δ = 0.015 0.12 0.14 0.99 0.14 0.98 0.81 0.89
δ = 0.035 0.31 0.17 0.98 0.39 0.97 0.82 0.89
ξ = 1.500 0.15 0.11 0.99 0.17 0.99 0.90 0.88
ξ = 2.000 0.27 0.18 0.98 0.34 0.97 0.75 0.90
γ = 0.085 0.08 0.16 0.99 0.10 0.98 0.81 0.90
γ = 0.105 0.33 0.18 0.98 0.41 0.97 0.81 0.89

higher values for both a1 and a2. Finally, it is interesting to note that our model
implies that a1 is increasing in ξ, which is the opposite of what happens with no
financial frictions.

4.4 News shocks

We now turn to news shocks. Example 3 in Section 3 shows that in the case of
no adjustment costs news shocks introduce additional noise in average q, thus re-
ducing its predictive power. Here we want to investigate whether the same forces
are at work in our full model with adjustment costs and see their quantitative
implications.

Introducing news shocks increases the number of state variables, since we
need to keep track of anticipated values of xt. Therefore, to simplify computations,

a2 = 0.15, which are very close to our baseline results.
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Table 7: News shocks: calibration

Parameters Moments
δ ξ γ µ(IK) σ(IK)

σ(CFK) µ(qa) σ(qa)

Targets 0.17 0.98 2.5 0.97
No news (7 states) 0.0250 2.00 0.09 0.22 0.79 2.49 0.27
No news (2 states) 0.0200 2.00 0.10 0.22 0.94 2.24 0.33
J = 1 0.0275 3.00 0.08 0.21 0.86 2.39 0.42
J = 2 0.0225 3.50 0.08 0.20 0.85 2.24 0.45
J = 3 0.0225 3.50 0.08 0.19 0.91 2.67 0.59
J = 4 0.0275 3.50 0.08 0.19 0.95 2.48 0.59
J = 5 0.0300 3.50 0.08 0.19 0.97 2.50 0.63

we employ a coarser description of the permanent component of the productivity
process, using a two-state Markov process for xt. The stochastic process for At

is specified and calibrated as in our baseline but we assume agents observe xt J
periods in advance as in Example 3 in Section 3. We experiment with J = 1, 2, ..., 5,
re-calibrating the parameters δ, ξ and γ for each value of J. In Table 7 we report
the calibrated parameters for each value of J. In the Table we also report our base-
line calibration (no news, 7 states) and a calibration with no news and a 2 states
Markov chain, which help to evaluate the effect of news on our results.

Table 7 shows that introducing news shocks improves the model’s ability to
match the empirical level of the investment rate, reducing the value of µ(IK),
while producing similar values for σ(IK) and µ(qa). In the table, we also report
the volatility of qa (which is not used as a target for our calibration), and the ta-
ble shows that introducing news improves the model’s realism in this dimension.
The analytical derivations in Section 3 (Example 3) suggest a reason for this: an-
ticipated shocks seem to introduce an additional source of volatility in qa.

Turning to investment regressions, Table 8 shows regression coefficients and
R2 for different values of J. The coefficient on qa and the R2 behave in a simi-
lar way as suggested by Example 3: increasing the horizon adds noise in qa thus
reducing the coefficient and the overall R2. The cash flow coefficient goes down
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Table 8: News shocks: investment regressions

a1 a2 R2

GH (1995) 0.033 0.24
No news (7 states) 0.2047 0.1530 0.984
No news (2 states) 0.2434 0.0829 0.985
J = 1 0.1920 −0.0121 0.982
J = 2 0.1774 0.0161 0.974
J = 3 0.1417 0.0502 0.978
J = 4 0.1467 0.0628 0.976
J = 5 0.1394 0.0824 0.971

when going from no news to 1 period anticipation, and then increases monotoni-
cally in J.

Comparing the cases of no news and the case J = 5, the overall take away
from Tables 7 and 8 is that news shocks improve the model’s ability to match the
observed behavior of investment, q and cash flow, both in terms of levels and
volatility and in terms of the cross-correlations captured by investment regres-
sions. The central intuition is that news shocks introduce a source of variation in
q due to anticipated future shocks, which have little bearing on the contempora-
neous movements in investment.

Due to the use of a 2 state Markov chain, the model with news does worse
than the baseline in terms of the cash flow coefficient, so it is an open quesiton
for future work whether increasing the state space and possibly using alternative
models of anticipated news that economize on state variables can further improve
the model’s empirical performance.28

4.5 Targeting the mean finance premium

In this section we consider an alternative calibration in which we add to our target
moments the mean finance premium, µ( f p). Following Bernanke et al. (1999) we

28See for example the information structure in Blanchard et al. (2013).

36



Table 9: Targeting the finance premium

Parameters:
δ ξ γ

0.1300 2.00 0.005
Moments:

µ(IK) µ(qa) σ(IK) µ( f p)
Target 0.17 2.5 0.111 0.020
Model 0.24 2.2 0.096 0.024
Investment regression:

a1 a2 R2

0.19 0.22 0.99

choose a target for µ f p of 2%. In particular, we now choose the parameters δ, ξ,
and γ to minimize the average squared percentage deviation of the four moments
targeted. The main reason for this robustness check is to ensure that our results
do not rely on an implausibly high value of the external finance premium.

Parameter values, model moments and regression results for this calibration
are reported in Table 9. Overall, the results are similar to the baseline, except this
calibration delivers a larger coefficient on a2. In particular, a useful observation
is that the model does not need to rely on a high external finance premium to
produce a large wedge between average and marginal q.

5 Conclusions

The paper shows that financial frictions can help dynamic investment models
move closer to the correlations observed in the data. The model in this paper
is stylized, but we think our main conclusions on the role of different shocks will
extend to more complex models. In particular, we think it is a promising avenue
to build models where a substantial fraction of the volatility in q is associated to
news about profitability relatively far in the future and where these news have rel-
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atively small effects on current investment decisions. By assuming risk neutrality,
we have omitted an important source of volatility in asset prices, namely volatility
in discount factors and risk premia. It is an important open question how these
additional sources of volatility affect the correlations investigated here, especially
because these factors are likely to correlate with the stringency of financial con-
straints for individual firms.
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A Appendix

A.1 Proofs for Section 2

Proof of Proposition 2. The envelope condition for K is

v (b, s) = λ
(

A (s)− G2
(
K′, K

)
− b
)

.

Substituting in (9) and using time subscripts, we get

λtG1,t = β̂λtEt [bt+1] + βEt [λt+1 (At+1 − G2,t+1 − bt+1)] , (31)

which, rearranged, gives (13). Notice that (12) and µt ≥ 0 imply

Et
[
(β̂λt − βλt+1)bt+1

]
≥ 0.

So (31) implies
G1,tλt ≥ βEt [λt+1 (At+1 − G2,t+1)] ,

which yields the first inequality in (14). Moreover, (12) also implies

Et
[
β̂λt (At+1 − G2,t+1 − bt+1)

]
≤ Et [βλt+1 (At+1 − G2,t+1 − bt+1)] ,

which, together with (31), gives the second inequality in (14).

A.2 Proofs for Section 3

Proof of Lemma 1. Let B̃ be the space of bounded functions f : S/sr → [1, ∞).
Define the map T : B̃→ B̃ as follows

T f (s) = (1− θ) β
(1− γ)E [ f (s′) R (s′) |s, s′ 6= sr] + γR (sr)

1− θβ̂E [R(s′)|s]
.
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Let us first check that T f ∈ B̃ if f ∈ B̃, so the map is well defined. Notice that
conditions (18)-(19) and β < β̂ imply that

(1− θ) βE [R (s′) |s]
1− θβ̂E [R (s′) |s]

> 1.

Then for any f ∈ B̃ we have

T f (s) ≥ (1− θ) βE [R (s′) |s]
1− θβ̂E [R (s′) |s]

> 1, (32)

showing that T f (s) ≥ 1.
Next, we show that T satisfies Blackwell’s sufficient conditions for a contrac-

tion. The monotonicity of T is easily established. To check that it satisfies the
discounting property notice that if f ′ = f + a, then

T f ′ (s)− T f (s) =
(1− γ) (1− θ) βE [R (s′) |s, s 6= sr]

1− θβ̂E [R (s′) |s]
a < ζa,

where the inequality follows from assumption (20). Since T is a contraction a
unique fixed point f exists. Set Λ(s) = f (s) for all s 6= sr. Inequality (32) shows
that Λ (s) > 1 for all s 6= sr, completing the proof.

Proof of Proposition 3. Let Λ be defined as in Lemma 1. We proceed by guessing
and verifying that the value function has the form (16). Under this conjecture, the
no-default condition (4) can be rewritten in the form

B′(s′) ≤ θR(s′)K′.

Therefore, we can rewrite problem (2) as

max
C,K′,B′(.)

C + β ∑
s′

π
(
s′|s
) [

Λ
(
s′
) (

R
(
s′
)

K′ − B′
(
s′
))]
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s.t. C + K′ ≤ R (s)K− B + β̂ ∑
s′

π(s′|s)B′(s′), (λ)

B′
(
s′
)
≤ θR

(
s′
)

K′ for all s′, (µ
(
s′
)

π
(
s′|s
)
)

C ≥ 0, (τc)

K ≥ 0, (τk)

where, in parenthesis, we report the Lagrange multiplier associated to each con-
straint. The multipliers of the no-default constraints are normalized by the prob-
abilities π (s′|s). The first-order conditions for this problem are

1− λ + τc = 0,

βE
[
Λ(s′)R(s′)|s

]
− λ + θE

[
µ(s′)R(s′)|s

]
+ τk = 0,

−βΛ(s′)π
(
s′|s
)
+ λβ̂π

(
s′|s
)
− µ

(
s′
)

π
(
s′|s
)
= 0.

We want to show that the values for C, K′, B′ in the statement of the proposition
are optimal. It is immediate to check that they satisfy the problem’s constraints.
To show that they are optimal we need to show that τc = λ− 1 > 0, τk = 0, and
µ (s′) > 0 for all s′. Setting τk = 0 the second and third first-order conditions give
us

λ =
(1− θ) βE [Λ(s′)R(s′)]

1− θβ̂E [R′(s′)]

which, by construction, is equal to Λ (s). Then we have

τc = Λ (s)− 1 > 0,

which follows from Lemma 1,

µ
(
s′
)
= β̂Λ (s)− βΛ

(
s′
)
> 0,

which follows from condition (22). Substituting the optimal values in the objective
function we obtain Λ (s) (R (s)K− B) confirming our initial guess.
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Proof of Proposition 5. First we derive the formula (28) for average q. From formula
(26) we have

q̃a
t =

[
β (1− θ) (γ + (1− γ) Λ̄) + θβ̂

]
Et
[
Ãt+1

]
+ β (1− θ) (1− γ)R̄Et

[
Λ̃t+1

]
=
[
β (1− θ) (γ + (1− γ) Λ̄) + θβ̂

]
xt+1

+ β (1− θ) (1− γ)R̄Λ̄Et

[
1

1− θβ̂R̄

∞

∑
j=0

(
(1− γ) Λ̄

γ + (1− γ) Λ̄

)j

Et+1

[
xt+1+j

R̄

]]
,

where the last equality comes from formula (27) and the fact that xt+1 is known
at time t and ηt+1+j is not known at t for all j ≥ 0. Now simplify the second term
using the dynamic equation for xt+1+j:

xt+1+j = ρjxt+1 +
j

∑
j′=1

ρj−j′εt+1+j′ .

By using this expression and simplify the algebra, we obtain:

Et

[
1

1− θβ̂R̄

∞

∑
j=0

(
(1− γ) Λ̄

γ + (1− γ) Λ̄

)j

Et+1
[
xt+1+j

]]

=
1

1− θβ̂R̄
1

1− (1−γ)Λ̄ρ

γ+(1−γ)Λ̄

xt+1

+Et

[
1

1− θβ̂R̄

∞

∑
j=0

(
(1− γ) Λ̄

γ + (1− γ) Λ̄

)j j

∑
j′=1

ρj−j′εt+1+j′

]
.

Using the fact that Et

[
εt+1+j′

]
= 0 for all j′ > J − 1 and Et

[
εt+1+j′

]
= εt+1+j′ for
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j′ ≤ J − 1, the second term becomes

Et

[
1

1− θβ̂R̄

∞

∑
j=0

(
(1− γ) Λ̄

γ + (1− γ) Λ̄

)j j

∑
j′=1

ρj−j′εt+1+j′

]

= Et

[
1

1− θβ̂R̄

∞

∑
j′=1

∞

∑
j=j′

(
(1− γ) Λ̄

γ + (1− γ) Λ̄

)j

ρj−j′εt+1+j′

]

=
1

1− θβ̂R̄

J−1

∑
j′=1

(
(1− γ) Λ̄

γ + (1− γ) Λ̄

)j′

εt+1+j′
1

1− (1−γ)Λ̄ρ

γ+(1−γ)Λ̄

.

This equality combined with the derivation for q̃a
t above implies (28).

Now we compute regression coefficients and R2 for the regression of ˜IKt on
Ãt and q̃a

t . Let yt = ˜IKt and Xt =
[

Ãt q̃a
t

]
. To simplify the algebra write the

equations for ˜IKt and q̃t as follows:

˜IKt = αi1Ãt + αi2xt+1

q̃a
t = αqxt+1 + ε̃t

We can then compute

E[ytXt] =
[
(αi1 + αi2ρ) σ2 + α1σ2

η (αi1 + αi2ρ) αqρσ2 + αi2αqσ̃2
ε

]
,

E[XtX′t] =

[
σ2 + σ2

η αqρσ2

αqρσ2 α2
qσ2 + σ̃2

ε

]
,

and
E[y2

t ] = (αi1 + αi2ρ)2 σ2 + α2
i2σ̃2

ε + αi1σ2
η ,

where σ2 = var(xt) = (1− ρ2)σ2
ε and σ̃2

ε = var(ε̃t).
The coefficients on cash flow and q̃a

t are given by:

1
det(E[XtX′t])

[
α2

qσ2 + σ̃2
ε −αqρσ2

−αqρσ2 σ2 + σ2
η

]
E[ytXt],
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and, after some algebra, we get the coefficient on qa, which is

αi2αq

(
σ2

ηρ2σ2 +
(

σ2 + σ2
η

)
σ2

ε

)
α2

qσ4(1− ρ2) + σ2
η(α

2
qσ2 + σ̃2

ε ) + σ2σ̃2
ε

,

and is immediately decreasing in σ̃2
ε . Similarly, we can derive the coefficient on

Ãt, which is

σ̃2
ε

(
(αi1 + αi2ρ) σ2 + αi1σ2

η

)
+ αi1α2

qσ2
(

σ̃2
ε + σ2

η

)
α2

qσ4(1− ρ2) + σ2
η(α

2
qσ2 + σ̃2

ε ) + σ2σ̃2
ε

.

Rewrite this expression as

A1 + A2σ̃2
ε

A3 + A4σ̃2
ε
=

A2

A4
+

A1A4 − A2A3

A4 (A3 + A4σ̃2
ε )

,

where A1, A2, A3, A4 > 0. Direct algebra yields

A1A4 − A2A3 = −α2
qσ2ραi2σ2

ε

(
σ2 + σ2

η

)
− α2

qσ2αi2ρσ2ρ2σ2
η < 0.

Therefore the coefficient on cash flow is strictly increasing in σ̃2
ε .

Finally, the R2 is

R2 =
E[ytXt]E[XtX′t]

−1E[X′tyt]

E[y2
t ]

,

which can be written as

R2 =
B1 + B2σ̃2

ε

B3 + B4σ̃2
ε
=

B2

B4
+

B1B4 − B2B3

B4 (B3 + B4σ̃2
ε )

,

where B1, B2, B3, B4 > 0. In order to show that R2 is decreasing in σ̃2
ε , we only
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need to show that B1B4 − B2B3 > 0. After some algebra we obtain

B1B4 − B2B3 =

σ2
ηα2

i2ρ2σ2α2
qσ2

ηρ2σ2 +
(

σ2 + σ2
η

)
α2

i2σ2
ε α2

q

(
σ2

ηρ2σ2 +
(

σ2(1− ρ2) + σ2
η

)
σ2

ε + ρ2σ2
(

σ2 + σ2
η

))
> 0.

A.3 Numerical Algorithm

With slight abuse of notation, let v(n, s) denote the value function as a function of
net worth net of adjustment costs n = A + 1− δ− b instead of as a function of b.

The main complication in the computation is that at each iteration we have
to solve for an optimal state-contingent portfolio choice because the entrepreneur
can choose b′ (s′) for each s′. Let λ denote the multiplier on the budget constraint
(6). The envelope condition implies vn (s, n) = 1 + λ. Moreover

β̂ (1 + λ) ≥ βvn
(

A
(
s′
)
+ 1− δ− b′

(
s′
)

, s′
)

v
(

A
(
s′
)
+ 1− δ− b′

(
s′
)

, s′
)
≥ (1− θ) v

(
A
(
s′
)
+ 1− δ, s′

)
. (33)

with at least one of the two inequalities holds with equality. These two equations
determine b′ (s′) as a function of λ. To determine k′ we have:

G1
(
k′, 1

)
(1 + λ) = β̂E

[
b′
(
s′
)
|s
]
(1 + λ) + βE

[
v
(

A
(
s′
)
+ 1− δ− b′

(
s′
)

, s′
)
|s
]

(34)
so k′ is a function of λ. Notice that in order to solve for the optimal decisions
b (s′) and k′ we need to invert the first derivative: vn. Numerical derivative is
computationally time consuming and imprecise. Thus in each iteration of the
algorithm, we solve for both v and vn.

Lastly, to compute λ, we use

A (s) + 1− δ− b + β̂E
[
b′
(
s′
)
|s
]

k′ − G
(
k′, 1

) { = 0 if λ > 0
> 0 if λ = 0

,
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where b′ (s′) an k′ are determined from (33) and (34) given λ.
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